Section 5.3 (page 349)

1. (a) f(g(x)) = 5[(x-1)/5] + 1 = xg(f(x)) = [(5x + 1) - 1]/5 = x

a)
$$f(g(x)) = (\sqrt[3]{x})^3 = x$$
, $g(x) = (\sqrt[3]{x})^3 = x$

3. (a)
$$f(g(x)) = (\sqrt[3]{x})^3 = x$$
; $g(f(x)) = \sqrt[3]{x^3} = x$
(b)

$$\int_{-3}^{-3} + \frac{1}{x^2 + 4 - 4} = x;$$
5. (a) $f(g(x)) = \sqrt{x^2 + 4 - 4} = x;$

(b)

$$g(f(x)) = (\sqrt{x-4})^2 + 4 = x$$

7. (a)
$$f(g(x)) = \frac{1}{1/x} = x$$
; $g(f(x)) = \frac{1}{1/x} = x$
(b)

One-to-one, inverse exists.

Not one-to-one, inverse does not exist.

One-to-one, inverse exists.

19.

One-to-one, inverse exists.

21.

One-to-one, inverse exists.

23. (a)
$$f^{-1}(x) = (x+3)/2$$

(b)

- (c) f and f^{-1} are symmetric about y = x.
- (d) Domain of f and f^{-1} : all real numbers Range of f and f^{-1} : all real numbers
- **27.** (a) $f^{-1}(x) = x^2$, $x \ge 0$

- (c) f and f^{-1} are symmetric about y = x.
- (d) Domain of f and f^{-1} : Range of f and f^{-1} :
- $y \ge 0$ **31.** (a) $f^{-1}(x) = x^3 + 1$

(b)

- (c) f and f^{-1} are symmetric about y = x.
- (d) Domain of f and f^{-1} : all real numbers Range of f and f^{-1} : all real numbers

25. (a) $f^{-1}(x) = x^{1/5}$

- (c) f and f^{-1} are symmetric about y = x.
- (d) Domain of f and f^{-1} : all real numbers Range of f and f^{-1} : all real numbers
- **29.** (a) $f^{-1}(x) = \sqrt{4 x^2}$, $0 \le x \le 2$

- (c) f and f^{-1} are symmetric about y = x.
- (d) Domain of f and f^{-1} : $0 \le x \le 2$ Range of f and f^{-1} : $0 \le y \le 2$
- **33.** (a) $f^{-1}(x) = x^{3/2}, x \ge 0$

(b)

- (c) f and f^{-1} are symmetric about y = x.
- (d) Domain of f and f^{-1} : $x \ge 0$ Range of f and f^{-1} : $y \ge 0$

35. (a) $f^{-1}(x) = \sqrt{7}x/\sqrt{1-x^2}, -1 < x < 1$

(b)

- (c) f and f^{-1} are symmetric about y = x.
- (d) Domain of f: all real numbers Domain of f^{-1} : -1 < x < 1Range of f: -1 < y < 1Range of f^{-1} : all real numbers

	runge or j		. un reur nu			
37.	x	0	1	2	4	
	f(x)	1	2	3	4	
	x	1	2	3	4	

f(x)	1	2	3	4
x	1	2	3	4
$f^{-1}(x)$	0	1	2	4

- **39.** (a) Proof
 - (b) $y = \frac{20}{7}(80 x)$

x: total cost

y: number of pounds of the less expensive commodity

- (c) [62.5, 80] (d) 20 lb
- 43. Inverse does not exist. **41.** Inverse exists.
- **45**. Inverse exists. **47.** f'(x) = 2(x - 4) > 0 on $(4, \infty)$
- **49.** $f'(x) = -8/x^3 < 0 \text{ on } (0, \infty)$
- **51.** $f'(x) = -\sin x < 0 \text{ on } (0, \pi)$

53.
$$f^{-1}(x) = \begin{cases} [1 - \sqrt{1 + 16x^2}]/(2x), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

The graph of f^{-1} is a reflection of the graph of f in the line y = -x.

55. (a) and (b)

57. (a) and (b)

- (c) f is one-to-one and has an inverse function.
- (c) g is not one-to-one and does not have an inverse function.
- **59**. One-to-one
- 61. One-to-one

$$f^{-1}(x) = x^2 + 2, x \ge 0$$

$$f^{-1}(x) = 2 - x, x \ge 0$$

63.
$$f^{-1}(x) = \sqrt{x} + 3$$
, $x \ge 0$ (Answer is not unique.)

65.
$$f^{-1}(x) = x - 3$$
, $x \ge 0$ (Answer is not unique.)

- 67. Inverse exists. Volume is an increasing function, and therefore is one-to-one. The inverse function gives the time t corresponding to the volume V.
- **69.** Inverse does not exist. **71.** 1/27 **73**. 1/5

75.
$$2\sqrt{3}/3$$
 77. -2 **79.** 1/13

81. (a) Domain of $f: (-\infty, \infty)$ (b) Range of $f: (-\infty, \infty)$

Domain of
$$f^{-1}$$
: $(-\infty, \infty)$ Range of f^{-1} : $(-\infty, \infty)$
(c) (d) $f'(\frac{1}{2}) = \frac{3}{4}, (f^{-1})'(\frac{1}{8}) = \frac{4}{3}$

83. (a) Domain of $f: [4, \infty)$ Domain of f^{-1} : $[0, \infty)$

(c)

(b) Range of $f: [0, \infty)$ Range of f^{-1} : $[4, \infty)$

(d) $f'(5) = \frac{1}{2}, (f^{-1})'(1) = 2$

85.
$$-\frac{1}{11}$$
 87. 32 89. 600

85. $-\frac{1}{11}$ **87.** 32 **89.** 600 **91.** $(g^{-1} \circ f^{-1})(x) = (x+1)/2$ **93.** $(f \circ g)^{-1}(x) = (x+1)/2$

95. Let y = f(x) be one-to-one. Solve for x as a function of y. Interchange x and y to get $y = f^{-1}(x)$. Let the domain of f^{-1} be

the range of f. Verify that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$. Example: $f(x) = x^3$; $y = x^3$; $x = \sqrt[3]{y}$; $y = \sqrt[3]{x}$; $f^{-1}(x) = \sqrt[3]{x}$

97. Many x-values yield the same y-value. For example, $f(\pi) = 0 = f(0)$. The graph is not continuous at $[(2n-1)\pi]/2$ where n is an integer.

99.
$$\frac{1}{4}$$
 101. False. Let $f(x) = x^2$. **103.** True

f does not pass the horizontal line test.

111. Proof; concave upward **107–109**. Proofs **113.** Proof; $\sqrt{5}/5$

115. (a) Proof (b) $f^{-1}(x) = \frac{b - dx}{cx - a}$ (c) a = -d, or b = c = 0, a = d